

Supporting Information

for Adv. Mater., DOI: 10.1002/adma.201201845

A Novel Electromechanical Actuation Mechanism of a Carbon Nanotube Fiber

Wenhan Guo, Chao Liu, Fangyuan Zhao, Xuemei Sun, Zhibin Yang, Tao Chen, Xuli Chen, Longbin Qiu, Xinhua Hu, and Huisheng Peng*

Supporting Information for

A novel electromechanical actuation of carbon nanotube fiber

Wenhan Guo,^{1†} Chao Liu,^{1†} Fangyuan Zhao,² Xuemei Sun,¹ Zhibin Yang,¹ Tao Chen,¹ Xuli Chen,¹ Longbin Qiu,¹ Xinhua Hu,² Huisheng Peng^{1*}

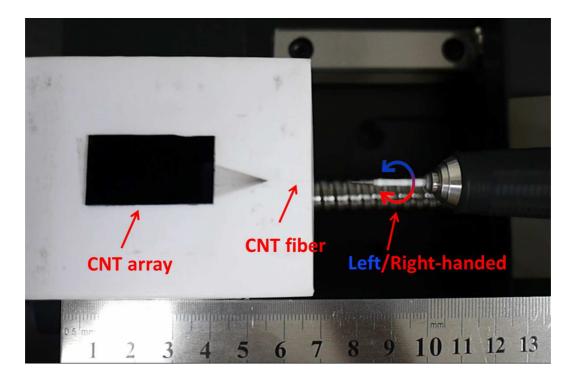
¹State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, and Laboratory of Advanced Materials, Fudan University, Shanghai 200438, China; Email: penghs@fudan.edu.cn. [†]These authors contributed equally to this work.

²Department of Materials Science and Key Laboratory of Micro and Nano Photonic Structures (Ministry of Education), Fudan University, Shanghai 200438, China.

Movie S1. The spinning process to obtain a left-handed CNT fiber from a CNT array.

Movie S2. A left-handed CNT fiber upon using a pulsed current between 0 and 4 mA with a frequency of 1 Hz. The CNT fiber was straightened when subjected to a current.

Movie S3. The opposing rotations of the two ends in a left-handed CNT fiber upon passing current observed with optical microscopy. The CNT fiber can quickly return to the original state upon removing the current.


Movie S4. Two paddles anchored near the two ends of a left-handed CNT fiber rotating in opposite directions upon passing a current and quickly returning to the original state upon the removal of the current. These results further confirm the conclusion in Movie S3.

Movie S5. The right part of a right-handed CNT fiber gradually rotating upon the passing of a current increasing from 0 to 5 mA and then returning to the original state as the current decreases to 0 mA. The movie was obtained under an optical microscopy.

Movie S6. An electric motor based on a CNT fiber rotating an object (here a piece of paper) upon passing a current of 5 mA.

	Ferroelectric and electrostrictive materials	Conducting polymers	Polymer gels (silicone)	CNT sheet	Our CNT fiber
Stress [MPa]	20	5	0.3	3.2	10
Strain [%]	3.5	2	120	1	2
Work Density [kJ/m ³]	320	100	10	32	>430
Efficiency [%]	/	<1	25	/	>10
Density [g/cm ³]	2	1	1	0.8	0.54
Modulus [GPa]	0.4	0.8	10-3	5.9	20
Cycle Life (Full strain)	/	28000	/	>9	>10 ³
Electric Field [kV/m]	10 ⁴	/	10 ⁵	120	1
Conductivity	very low	100	very low	10 ²	400
[S/cm]				(estimated)	
Rotation	no	no	no	no	yes
Media	air	electrolyte	electrolyte	high	air, water, organic
				vacuum	solvents, electrolyte

Table S1. Comparison between our CNT fiber and other actuation materials.

Figure S1. Photograph of the experimental setup to spin CNT fibers. The left- and right-handed fibers were obtained by changing the rotary direction of spinning probe.

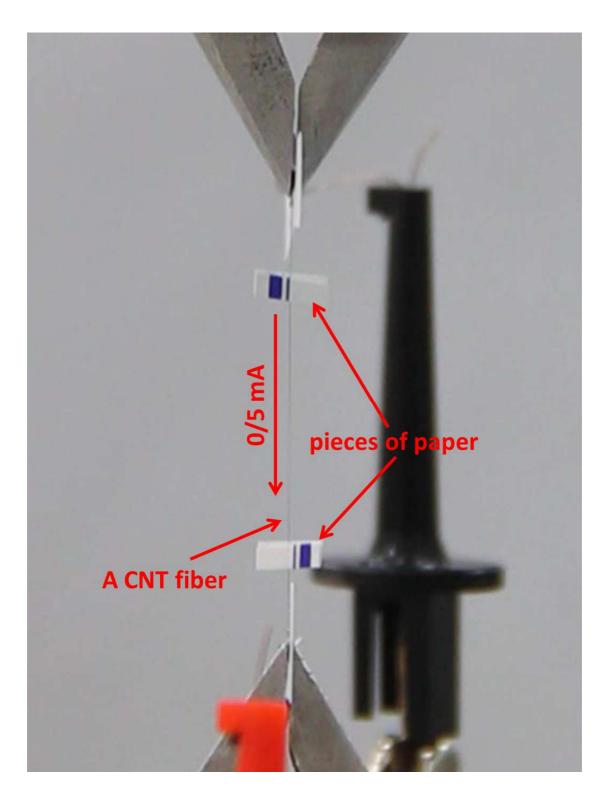
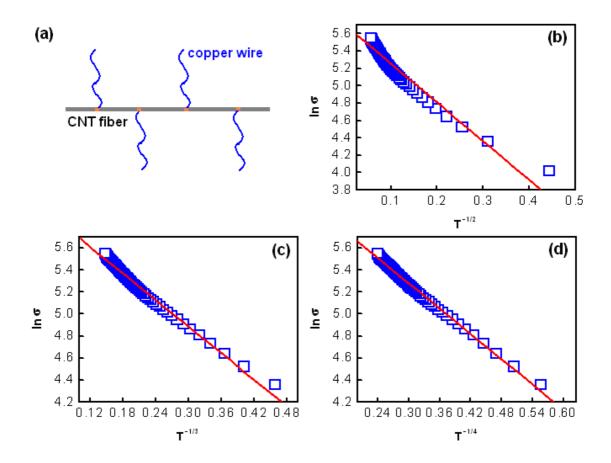
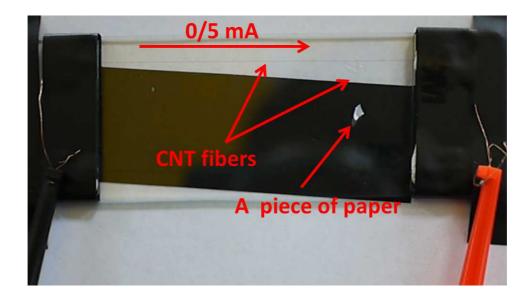




Figure S2. Photograph of the experimental setup shown in Movie 4.

Figure S3. Scaling of electrical conductivity (σ) with temperature (T) according to the equation of $\sigma \propto \exp(-A/T[1/(d+1)])$ based on the Mott's hopping model, where *A* is a constant and *d* is the dimensionality. **a.** The schematic illustration of the measurement based on a four-probe method. **b.** The plot of $\ln\sigma$ versus $T^{1/2}$ (for d = 1). **c.** The plot of $\ln\sigma$ versus $T^{1/3}$ (for d = 2). **d.** The plot of $\ln\sigma$ versus $T^{1/4}$ (for d = 3). The results also indicate that the electron transport of CNT fiber is consistent with a three-dimensional hopping mechanism. ^[S5]

Figure S4. Photograph of the experimental setup shown in Movie S6. The CNT fiber which saw the current had a length of 4 cm, while the CNT shaft between the object and the CNT fiber had a length of 8.5 mm.

Reference for the Supporting Information

- [S1] J. Madden, N. A. Vandesteeg, P. A. Anquetil, P. Madden, A. Takshi, R. Z. Pytel, S. R. Lafontaine, P. A. Wieringa, I. W. Hunter, *Ieee J Oceanic Eng* 2004, 29, 706.
- [S2] T. Mirfakhrai, J. Madden, R. H. Baughman, MATERIALS TODAY 2007, 10, 30.
- [S3] P. Brochu, Q. B. Pei, Macromol Rapid Comm 2010, 31, 10.
- [S4] A. E. Aliev, J. Y. Oh, M. E. Kozlov, A. A. Kuznetsov, S. L. Fang, A. F. Fonseca, R. Ovalle, M. D. Lima, M. H. Haque, Y. N. Gartstein, M. Zhang, A. A. Zakhidov, R. H. Baughman, *Science* 2009, 323, 1575.
- [S5] Q. W. Li, Y. Li, X. F. Zhang, S. B. Chikkannanavar, Y. H. Zhao, A. M. Dangelewicz, L. X. Zheng, S. K. Doorn, Q. X. Jia, D. E. Peterson, P. N. Arendt, Y. T. Zhu, *Adv Mater* 2007, 19, 3358.